
Master Thesis

Topology Preserving Contrastive Learning

Simon Schindler

January, 2024

Thesis submitted in fulfillment of the requirements
for the degree of M. Sc. in Engineering awarded by the joint program
Applied Image and Signal Processing at the
University of Applied Sciences and Paris-Lodron-University of Salzburg

Supervisor: Stefan Huber

Details

Author Simon Schindler, B. Eng.

University Salzburg University of Applied Sciences
Paris-Lodron-University of Salzburg

Degree Program Applied Image and Signal Processing

Title of the Thesis Topology Preserving Contrastive Learning

Keywords persistent topology, homology, contrastive learning,
machine learning, deep learning

Supervisor FH-Prof. Dr. Stefan Huber

Abstract

This work explores the integration of Persistent Homology, a key concept in Topological
Data Analysis, into Contrastive Learning, a popular method for learning representa-
tions from large unlabeled datasets. It focuses on enhancing the quality of representa-
tions produced by this unsupervised representation learning technique and investigates
the potential benefits of maintaining topological information in data representations
for downstream tasks.

After introducing the basic terminology and concepts of Contrastive Learning and Per-
sistent Homology and giving a brief overview about related work, the study is struc-
tured around a series of experiments using SimCLR, a Contrastive Learning framework
with the Topological Signature Loss, a differentiable loss function based on Persistent
Topology.

These experiments aim at assessing the efficacy of various approaches to incorporate
the Topological Signature Loss into the representation learning process while preserv-
ing or even enhancing the quality of the learned representations. The outcomes provide
insights into the effectiveness of these integrations which lead to a discussion of the
implications resulting in further research questions.

3

Affidavit

I hereby declare that I have written the presented diploma thesis entirely on my own
and that I have not used any other sources apart from those given.

Salzburg, January 6, 2024
Place, date Signature

4

Contents

Contents

1. Introduction 7

2. Background 9
2.1. Representation Learning . 9

2.1.1. Introduction . 9
2.1.2. Forms of Representation Learning 12
2.1.3. Deep Learning as Representation Learning 12

2.2. Contrastive Representation Learning 13
2.2.1. General Framework . 13
2.2.2. Architectures . 15
2.2.3. Projection Head . 17
2.2.4. Augmentations . 18
2.2.5. Loss function . 19

2.3. Persistent Homology . 21
2.3.1. Simplices and Simplicial Complexes 22
2.3.2. Simplicial Homology . 24
2.3.3. Persistence and Filtrations . 27

3. Related Work 30
3.1. Topological Autoencoders . 30
3.2. Connectivity-Optimized Representation Learning via Persistent Homol-

ogy . 31

4. Experiments 33
4.1. Experiment 1: Variants of Topological Signature Loss 33
4.2. Experiment 2: Impact of Representation Dimensionality 35
4.3. Experiment 3: Balance between Loss Functions 36
4.4. Experiment 4: Excluding NT-Xent Regularization 36

5. Results 38
5.1. Experiment 1 . 39
5.2. Experiment 2 . 41
5.3. Experiment 3 . 41
5.4. Experiment 4 . 42

6. Discussion 53

7. Conclusion 56

List of Figures 58

Glossary 60

5

Contents

List of Tables 61

References 62

Appendix 65

A. Used Software Packages 65

6

1. Introduction

1. Introduction

Motivation In the evolving landscape of machine learning, a key objective has
emerged: to develop representations that are not only useful and effective but also
adaptable for different downstream tasks and, to a certain degree, interpretable.
This goal is particularly relevant in the realm of unsupervised learning techniques.
Within this domain, Contrastive Representation Learning (CL) has risen as a promis-
ing methodology, showcasing remarkable capability in deriving robust representations
from unlabeled data. Concurrently, Topological Data Analysis (TDA) has been gain-
ing traction in the machine learning community. Recent advancements, such as those
documented in [1], have successfully integrated Persistent Homology (PH) a central
tool in TDA into a widely used unsupervised Machine Learning (ML) architecture:
The Autoencoder (AE). This success suggests that the fusion of CL, another unsuper-
vised ML framework, with PH might yield similarly beneficial outcomes. The primary
motivation is to explore whether maintaining the topological information of data in
learned representations can enhance their efficacy when used in downstream tasks,
thereby contributing to the advancement of unsupervised learning methodologies.

Thesis Structure This thesis is structured as follows:

• Section 2: Theory - Lays the foundational concepts of representation learning,
with a focus on deep learning as a tool for representation learning. It also intro-
duces CL, detailing its general framework, architectures, projection head, aug-
mentations, and loss functions. Additionally, this section explores the concept of
persistent homology, including simplices, simplicial complexes, and persistence.

• Section 3: Related Work - Reviews existing literature on topologically regular-
ized AEs, situating this thesis within the broader context of current research.

• Section 4: Experiments - Describes the experimental approach taken in this
thesis, focusing on the application of the topological signature loss in CL, par-
ticularly in the SimCLR framework. This section is subdivided into different
experiments, each exploring various aspects and configurations of the applica-
tion of the topological signature loss function.

• Section 5: Results - Presents a detailed analysis of the observations and findings
from each of the experiments conducted, providing insights into the effects of
topological regularization on CL.

• Section 6: Discussion - Discusses the implications of the results, reflecting on
the successes, limitations, and potential areas of improvement in integrating
topological concepts into CL.

7

1. Introduction

• Section 7: Conclusion - Summarizes the main contributions of the thesis, revisits
the findings from each experiment, and proposes directions for future research
in this area of study.

• Appendices and References - Includes additional supporting information and
citations of all references used throughout the thesis.

This structure aims to provide a comprehensive exploration of the intersection between
TDA and CL, offering new perspectives and methodologies in the field of ML.

8

2. Background

2. Background

In this section, some basic terminology and definitions are introduced to ensure the
investigations in the following chapters are accessible to readers who may not have
a technical background in the fields of ML and/or algebraic topology. The first sub-
section focuses on the concept of Representation Learning (RL). This is followed by
a subsection about CL, a field of machine learning architectures used for RL. Lastly,
PH, a subfield of algebraic topology, is explained in the final part of this chapter.

2.1. Representation Learning

This section provides the reader with a brief introduction to RL, and is followed by
section 2.2 about CL, the RL technique used in this work.

2.1.1. Introduction

The representation of information plays a central role in the field of computer science:
For example, can the efficiency at problem-solving tasks be significantly increased if
the data is structured in a specifically organized format, commonly referred to as
a suitable data structure. Looking at the field of machine learning the efficacy of
models depends largely on the representation chosen for its input data. In the best
case, an optimal representation allows all important features required for the decision-
making or regression process to be incorporated into the corresponding model, while
at the same time ignoring superfluous details. Conversely, in the worst case, the most
interesting features of the data may not be usable for the model due to the wrong form
of representation or may not stand out clearly from all the features embedded in the
representation, resulting in significant underperformance.

Figure 1 illustrates this problem. It shows data of two classes in two different forms of
representation, of which only in the second form the two classes would be fully separa-
ble by a linear decision boundary. A rather “simple” linear classifier like a perceptron
would perform poorly if the input data was represented in cartesian coordinates, while
it could solve the task with an accuracy 100% with the data in polar coordinate for-
mat.

Put simply, a good representation is one that sufficiently summarizes and highlights
the most important concepts and details in the data and therefore makes a subsequent
learning task easier for a “simple” model [2]. A rather broad definition of a good
representation is given by Bengio et al. in [3], where they identify the following core
principles:

9

2. Background

Cartesian Coordinates Polar Coordinates

Figure 1: The same underlying data presented in cartesian and polar coordinates.

• Hierarchical and meaningful organization of multiple explanatory factors: This
principle underscores the necessity of structuring multiple explanatory factors
in a hierarchical manner, where more abstract and important concepts occupy
higher positions in the hierarchy. This enhances both interpretability and ro-
bustness to minor local variations in the input space.

• Local smoothness: The representation should exhibit smooth transitions1 as the
input data undergoes gradual changes. This attribute proves crucial for profi-
ciently interpolating between two samples in the representation space. Addi-
tionally, it contributes to greater invariance to localized alterations in the input
data.

• Temporal/spatial coherence: Following from the local smoothness criterion, tem-
porally or spatially proximate data samples should differ only slightly in their
representation, since they can mostly be related to the same categorical concepts.
This characteristic naturally fosters clustering within the representation space.

• Disentanglement of concepts: Important concepts present in the data should be
partitioned in the representation space. This benefits to a higher explainabili-
ty/interpretability of the representation.

• Sparsity: The input data should be explainable by a limited subset of latent
variables2. While only a small fraction of these variables should be activated,
the majority should remain neutral (i.e., equal to 0).

1In particular, the mapping f to the representation space should be Lipschitz continuous: Besides
beeing continuous, the rate of change should be bound by a real number L ≥ 0 such that the
following inequality holds: |f(x)− f(y)| ≤ L|x− y|.

2This assumes the manifold hypothesis stating that high dimensional real world datasets often lie
along lower dimensional latent manifolds.

10

2. Background

• Simplicity of factor interdependencies: If some factors are interdependent despite
disentanglement, their relationship should be simple, typically linear.

• Reusability across tasks: The representation should be sufficient for different
learning tasks and not tailored to a specific one.

It is important to note that achieving all of these properties may introduce conflicts
with optimizing performance for a specific task. Consequently, the representation may
lack task-specificity, potentially resulting in suboptimal performance compared to a
representation fine-tuned specifically for that task, often referred to as “overfitting” in
some contexts [2].

Besides being useful for downstream machine learning tasks, a good representation of
data can also enable the study of inherent properties present in the data itself, without
the need for a particular task.

The conventional way that has been mainly used to find good representations of some
data for a machine learning task is called feature engineering [2]. It aims at gener-
ating meaningful and augmentation-invariant features from the data, depending on
the model and the task. It frequently requires a substantial degree of domain expert
knowledge of the data and its underlying generative mechanisms, often leading to a
significant engineering endeavor. For instance, the search for optimal representations
of image data in the context of machine learning spanned several decades of intensive
research, a pursuit that to some extent became redundant with the advent of deep
learning within the domain of computer vision.

A more automated and data-driven methodology for the creation of features is RL.
Instead of relying on manually engineered features extracted from the data, valuable
representations can be directly learned from the data itself through this approach.
This circumvents the necessity for labor-intensive manual feature engineering while
mitigating the associated potential challenges and pitfalls. Formally it aims at finding
a parametric mapping fΘ : X → Y with X ⊂ RN , Y ⊂ RM operating on the data
sample xi ∈ X to create a suitable representation yi ∈ Y that captures the relevant
concepts and information present in the data.
The input data in X ⊂ RN is often high dimensional, e.g., images or videos, while the
relevant information can be represented in Y ⊂ RM with far less dimensions: M < N .
Therefore, RL must reduce the dimensionality of the data similarly to other dimen-
sionality reduction methods, while also learning a mapping that can be generalized to
unseen data.
A major downside of RL when compared to feature engineering can be a lower inter-
pretability of the learned representation for humans.

11

2. Background

2.1.2. Forms of Representation Learning

Depending on the task and the respectively available data, RL can be carried out
either in a supervised, unsupervised or self-supervised fashion:

• Supervised: The input data includes labels that are used to train a particular
model for a specific inference task. The model, such as a Multi-layer Perceptron
(MLP) classifier, learns an intermediate representation that is especially effective
for the task at hand. In the case of a MLP every hidden layer corresponds to
a intermediate representation of the data, especially useful for the subsequent
layer.

• Unsupervised: These methods are independent of the existence of labels for the
data set used. Representations are derived by analyzing relationships between
samples in the input data, e.g., with clustering algorithms or Principal Compo-
nent Analysis (PCA).

• Self-supervised: Label pairs are constructed for each sample in the unlabeled
input data. In this way, supervised training methods can be used even if there
are no labels, e.g., with CL introduced in section 2.2 or AEs.

2.1.3. Deep Learning as Representation Learning

The Deep Learning (DL) paradigm can be considered as a form of layered representa-
tion learning. It has shown remarkable effectiveness in a wide range of applications in
the recent years, mainly due to its ability to capture nested, hierarchical and complex
representations and the associated mappings adapted to specific tasks.
DL encompasses capabilities beyond the mere acquisition of task-specific representa-
tions through optimization. Specifically designed architectures such as Convolutional
Neural Networks (CNNs), Long Short Term Memorys (LSTMs) and transformer net-
works aswell as techniques such as regularization, pruning, and early stopping enhance
the quality of the learned representations, aligning them more with the criteria artic-
ulated by [3] and cross-referenced in section 2.1.1:

• Hierarchical and meaningful organization of multiple explanatory factors: Within
the context of neural networks, each layer is designed to construct a representa-
tion of input data that possesses utility for subsequent layers, ultimately culmi-
nating in a representation tailored to the specific task at hand.

• Local smoothness: Local smoothness is typically maintained by restricting the
transformations between layers in the neural network to continuous mappings.

• Temporal and spatial coherence: Temporal coherence is a characteristic of LSTMs
and transformer networks, while spatial coherence is a feature of CNNs.

12

2. Background

• Disentanglement of concepts: The pursuit of disentangled representation learning
is exemplified by approaches like the β - Variational Auto Encoder (β-VAE).

• Sparsity: Achieving sparsity in representations is attainable through the imple-
mentation of appropriate regularization and pruning techniques.

• Reusability across tasks: The concept of reusability across diverse tasks, facili-
tated by Transfer Learning, enables the utilization of a common model base and
the associated representations for addressing different tasks.

2.2. Contrastive Representation Learning

Although DL is frequently used within supervised learning settings, there is a notable
and growing interest in the utilization of self-supervised and unsupervised methodolo-
gies. The reason for this lies in the potential to operate without the need for labeled
data, as unlabeled data resources are often abundant. Conversely, the process of data
labeling is resource-intensive and susceptible to inaccuracies and biases introduced by
humans, thereby potentially compromising the quality of learned representations and
through this the overall performance of the models.

Abundant, unlabeled data, therefore can be used in the acquisition of basic representa-
tions, which subsequently may undergo fine-tuning with labeled data to fit for specific
tasks.

A very general approach and learning paradigm that makes use of the inherent in-
formation within extensive unlabeled datasets for the generation of high-quality rep-
resentations is known as CL. The core idea behind it is to teach a model to distin-
guish between instances of data points with the ultimate goal to learn generalizable
features in a task-agnostic manner. Should the model acquire the ability to differ-
entiate between distinct instances without incorporating knowledge about categories,
it may develop a representation that primarily captures apparent similarity among
these instances. This is analogous to how class-wise supervised learning also preserves
perceptible similarities within different classes.

2.2.1. General Framework

This subsection gives a short overview about the general building blocks of a CL
architecture and the nomenclature.

In the CL framework positive pairs denote pairs of data points xi, x
′
i created by two

distinct functions for augmentation ti, t
′
i ∈ T from a set of possible augmentations

T of the very same data point x ∈ X from a dataset X ⊂ RN . Therefore the pair
is considered similar and both augmentations share membership in the same pseudo
class. For example, in computer vision, two distinct augmentations of a single image
may constitute a positive pair.

13

2. Background

x

ti ∼ T

t′i ∼ T

xi

x′i

f()

f()

yi

y′i

g()

g()

zi

z′i

contrastive loss

Figure 2: The general contrastive learning framework consisting of an input sample
x ∈ X two different augmentations ti, t

′
i ∈ T , the augmented versions of the

image xi, x
′
i ∈ RN the encoder network f : RN → RM the representations

yi, y
′
i ∈ RM the projection head g : RM → RK and the embeddings zi, z

′
i ∈

RK on which the contrastive loss is then calculated.

Conversely, negative pairs are constructed by pairing augmented data points perceived
as dissimilar. These negative pairs can involve, for instance, combining an augmented
image with an entirely unrelated image drawn from the dataset.

All pairs are fed through a parameterizable function f : RN → RM that is usually a
neural network creating the so called representations yi, y

′
i. The data is then projected

by f into a usually lower dimensional space Y ⊂ RM , known as the representation
space.

In some architectures the computed representations are subsequently reduced in di-
mensionality by another parameterizable function g : RM → RK , called the projection
head, which is usually a shallow neural network, into an embedding space Z ⊂ RK

wherein the similarity of the pair is calculated. Other architectures, that do not apply
a projection head, compute the similarity directly on the representations in Y . For a
more in depth description of the projection head resort to section 2.2.3.

To train the model, a contrastive loss function is employed as the optimization objec-
tive to maximize a given similarity metric between the embeddings of positive pairs,
utilizing metrics such as the euclidean distance or the cosine similarity, while at the
same time maximizing the separation between the embeddings of negative pairs.

14

2. Background

Throughout the training process, the model acquires the ability to draw the embed-
dings of positive pairs closer together and push the embeddings of negative pairs further
apart. This iterative refinement improves the model’s capacity to capture meaningful
information in its representations and drives the model to become invariant to the
augmentations in T .

A rather formal description of the goal of CL would be the following:
Consider the set of all possible embeddings Z, which represents the union of all possible
augmentations subsequently projected by the encoder network f and the projection
head g. This can be formally expressed as:

Z =
⋃
t∈T

g(f(t(X)))

Next, define a relation ≡ on Z such that two elements u and v are related (i.e., u ≡ v)
if and only if there exist transformations t, t′ in T and an input x ∈ X for which
u = g(f(t(x))) and v = g(f(t′(x))).

The equivalence classes formed by this relation ≡ are the sets of augmentations
t(f(g(X))) for each transformation t in T . These classes partition the set Z.

The objective of CL is to bring these equivalence classes closer together by minimizing
the contrastive loss, effectively contracting the space of the augmentations within each
class.

Informally the CL framework can be viewed as a dictionary lookup. In this analogy,
the encoded input data acts as the query, and the encoded samples serve as the keys
in the dictionary. For a positive pair a query and a key are two augmented versions
of the same source image, which should be very similar in the representation space,
while it should not for negative pairs.

2.2.2. Architectures

In their 2020 survey on CL Jaiswal et al. identified four main architectures into which
strategies for CL can be clustered. The following will briefly introduce all four of them
and their respective advantages and drawbacks.

End-to-End: The end-to-end learning system represents the most straightforward ap-
proach to CL and shares similarities with the general framework illustrated in Figure
2. In alignment with the general framework, the End-to-End system incorporates two
encoders, specifically a query encoder denoted as fq and a key encoder referred to as
fk. Importantly, these two encoders may be the same but can be also distinct from
each other, and they undergo simultaneous end-to-end updates via backpropagation
during the training process.

15

2. Background

With the exception of the two augmented versions of the initial image xi, x
′
i, all other

augmentations within the batch are treated as negatives. It is worth noting that
the number of negative samples in this approach corresponds to the batch size, as
it aggregates negative samples from the current batch. Consequently, the framework
particularly benefits from larger batch sizes. However, it is crucial to recognize that
the batch size is restricted by the available memory, posing an ongoing challenge for
scalability in these methods.

The most prominent representative of this approach is SimCLR introduced by Chen
et al. in [4], where batch sizes up to 4096 were employed, and the projection head was
introduced to enhance performance, with fq being set equal to fk. SimCLR frequently
serves as a benchmark for evaluating other CL architectures.

Memory Bank: The concept of maintaining a detached set of representations for the
entire dataset with the purpose of instance discrimination was introduced by Wu et al.
in 2018 in [5]. This approach allowed the incorporation of a large number of negative
samples without increasing the batch to an infeasibly large size. The stored repre-
sentations within this memory bank are subsequently chosen randomly to function as
the keys (the negatives in the CL loss), while the queries are generated by the query
encoder fq from two distinct transformations of the same images. The representations
produced by the query encoder are then saved in the memory bank for further uti-
lization as keys in the following epoch. Since the negative samples used for the loss
calculation are detached, the learning objective is just optimized with respect to the
the representations of the current mini batch of every step.

One potential drawback of this approach is the computational cost of maintaining
current representations within the memory bank, as they tend to quickly become out-
dated within a few iterations. This occurs because the key encoder, responsible for
generating representations for each mini-batch, undergoes changes with each optimiza-
tion step, potentially leading to inconsistent representations, which may not be useful
when comparing to more recently generated representations.

Momentum Encoder: In their work to MoCov1 [6] He et al. introduced the idea
of using a dynamically changing encoder for the creation and maintenance of a dy-
namic dictionary. Based on their hypothesis that “good features can be learned by
a large dictionary that covers a rich set of negative samples, while the encoder for
the dictionary keys is kept as consistent as possible despite its evolution” they intro-
duce a modification of the memory bank architecture by substituting the conventional
memory bank with a concept known as a “momentum encoder”, which facilitates the
creation of a dynamic dictionary. In this dynamic dictionary approach, each new batch
of training data is initially processed by the momentum (key) encoder denoted as fk
and subsequently added to a queue within the dictionary. This dictionary queue is
then employed for the selection of negative samples. When the queue size reaches a
predefined threshold, the oldest batch is dequeued to maintain the queue’s size within
the limit. The formation of positive pairs involves encoding one augmentation, xi,
using the query encoder fq, and encoding the other augmentation, x′i, using the key

16

2. Background

encoder fk. To maintain the stability and consistency of the dictionary, where the
keys are derived from a slowly evolving encoder, the key encoder fk is designed as a
momentum-based moving average of the query encoder fq. Following an update to
fq through backpropagation with a contrastive loss function in conjunction with an
optimizer, the parameters θk of fk are adjusted according to the following equation:

θk = mθk + (1−m)θq (1)

In [6] a relatively large momentum like m = 0.999 yielded better results than smaller
values like m = 0.9. In contrast to the End-to-End framework, where the dictionary
size equals the size of the current mini batch, this architecture allows for arbitrary
dictionary sizes. This comes with the benefit of less memory consumption in the
training stage, since smaller batch sizes are also effective, while maintaining similar
or even better performance. For example MoCov2 [7], which is a slightly adopted
version of MoCov1 [6], utilizing a projection head in the training stage, yielded better
performance than SimCLR [4] (71.1 % vs 69.3 %) when trained and evaluated with
a linear classifier on the imagenet dataset while using a much smaller batch size for
training (256 vs. 4096).

Clustering: One problem with the previously discussed methods lies in their formal
treatment of each instance as its own unique class. This approach tends to separate
instances that should belong to the same class while just drawing similar augmenta-
tions of the same instance closer together. This outcome is undesirable since images
with similar semantics should ideally result in similar embeddings.

Caron et al. try to resolve this issue of CL with their SwAV architecture [8] by
utilizing a clustering algorithm to not only draw a pair of samples close to each other
as in above approaches, but to also ensure that all other representations that are
similar to each other form clusters together. In order to achieve this, they allocate
the representations of two distinct augmentations of an image, denoted as yi and y′i,
to their nearest clusters ca and cb selected from a finite set {c1, ..., ck}. In the loss
computation, these assignments are interchanged, such that yi is associated with cb
and y′i with ca. This, in essence, is designed to ultimately ensure that yi and y′i are
attributed to the same clusters and enables augmentations of other instances that are
similar in the representation space to also be assigned to that cluster. Compared to the
above mentioned contrastive methods, this approach demonstrates enhanced memory
efficiency, as it doesn’t need a memory bank nor a dictionary queue and also works
well with smaller batch sizes than the End-to-End approach [8].

2.2.3. Projection Head

Using a nonlinear projection head g, i.e. a shallow MLP in combination with an activa-
tion layer, to project the representations yi and y′i into a lower dimensional embedding
space Z while training does significantly improve the quality of the representations.
This, in return, yields a notable improvement in performance across downstream

17

2. Background

tasks, as established by prior research [4, 9]. In the work by T. Chen et al. [4], an over
10 percent enhancement in performance was documented, while X. Chen et al. [9] re-
ported a gain of over 5 percent in classification accuracy when employing a non-linear
projection head as opposed to directly using the representation for the loss calculation.

Gupta et al. try to answer the question why such a projection head improves the
representation quality in such a significant way in [10]. Following their training of
the widely recognized CL model, SimCLR, as introduced in the work by Chen et
al. [4], Gupta et al. conducted an analysis of the vector spaces into which both
the encoder h and the projection head g map their respective inputs. Notably, the
projection head g was investigated in three configurations: (1) as an identity mapping,
(2) as a single-layer perceptron and (3) as a MLP. In the assessment of the numerical
rank3 for both the projection head output space Z and the encoder output space Y ,
through torch.linalg.matrix_rank, an interesting trajectory was revealed: starting
from (1) the absence of a projection head, progressing to (2) a linear projection, and
finally to (3) a non-linear projection, there was a notable escalation in the rank of Y ,
coupled with a reduction in the rank of Z. Additionally, they observed a significant
improvement in performance on downstream tasks as they increased the complexity,
and consequently, the learning capacity of the projection head g from (1) to (2) to (3).
They emphasize this as a positive correlation between the rank deficit between Y and
Z and performance in downstream tasks. Building on these empirical findings, they
propose a hypothesis suggesting that the projection head implicitly acquires the ability
to select a subset of features for the application of the contrastive loss. This, in turn,
allows the projection head’s output to effectively minimize the contrastive loss, while
affording the encoder f the flexibility to learn features that are more generalizable. The
contrastive loss, such as the NT-Xent employed in this work, is formulated with the goal
of eliminating the impact of data augmentations while retaining the underlying content
information within the embedding it is employed on. By utilizing the projection head,
it becomes possible to achieve this objective, all the while permitting the retention
of data augmentation information within the representation space Y , which might be
important for downstream tasks.

2.2.4. Augmentations

Data augmentation plays a crucial role in CL by diversifying the training data, and
consequently enhancing model robustness, improving its capacity for feature discrimi-
nation, and mitigating issues related to overfitting. The employment of various trans-
formations as part of the augmentation process yields a more extensive and diverse

3The numerical matrix rank of a space A corresponds to the number of significant singular values in
the covariance matrix of the representations in that space, produced by the model when processing
test data.

18

2. Background

array of positive and negative data pairs, thereby forcing the model to learn augmen-
tation invariant features which enhances its capability to generalize effectively when
confronted with previously unseen data. This stands in contrast to supervised learn-
ing. While, generally speaking, data augmentations present a useful regularization
technique for supervised learning that helps to prevent overfitting, overly aggressive
data augmentations can actually have an adverse effect on the model’s performance
[3].

The specific arrangement and choice of data transforms plays a critical role for the
quality of representations learned by the model.

Chen et al. experimented in their original work on SimCLR [4], to determine the most
effective combination and order of transformations to benefit the quality of the learned
representation. The findings of this investigation revealed that while individual trans-
formations were adequate to enable the model to differentiate between positive and
negative pairs (i.e. minimize the contrastive loss), they were insufficient to promote the
learning of high-quality representations. The set of augmentation techniques examined
contains both spatial/geometric transformations (such as cropping, resizing, flipping,
rotating, and region removal) and appearance transformations (including color dis-
tortion, Gaussian blurring, and Sobel filtering). An illustration for transformations
can be seen in Figure 3. The incorporation of multiple transformations in sequence
introduced a higher level of complexity into the contrastive prediction task, resulting
in a substantial enhancement of the acquired representations. Notably, the combi-
nation of random cropping (along with resizing) and color distortion emerged as the
most effective in improving the model’s performance in downstream tasks. Chen et
al. argue that this particular combination, featuring both a spatial and an appearance
transformation, yields augmentation pairs with dissimilar characteristics in terms of
spatial content and color distribution. This divergence might force the model to learn
more abstract and fundamental concepts inherent in the underlying data.

2.2.5. Loss function

Contrastive losses are employed to enhance the similarity between representations of
augmented pairs of data samples. As opposed to having explicit target labels, the loss
relies on the notion of positive and negative pairs, where positive pairs should have
similar representations, and negative pairs have dissimilar ones.

A commonly used loss is the NT-Xent, the normalized temperature-scaled cross en-
tropy loss. Formally the loss for one positive pair of embeddings (zi, z

′
i) can be ex-

pressed as follows:

Definition 1 (NT-Xent)

Li = − log
exp(sim(zi, z

′
i)/τ)∑

j 6=i exp(sim(zi, zj)/τ)

19

2. Background

Figure 3: Different augmentations applied to an image.

Here, sim(zi, z
′
i) represents the similarity measure between the representations zi and

z′i e.g. using the cosine similarity function sim(u, v) = 〈u,v〉
‖u‖‖v‖ . The temperature

parameter τ scales the logits, influencing the level of discrimination between positive
and negative pairs during training. This can lead to enhanced robustness to variations
in the input space and aid in stabilizing the training process [11]. There is a total
number of 2N augmentations constructed from a batch of input data of size N . For
every sample of those 2N augmentations there exists one positive sample and 2(N−1)
negative ones, resulting in N positive pairs per batch. The total contrastive loss Lc is
calculated over all N positive pairs:

Lc =
1

N

N∑
i=1

Li =
1

N

N∑
i=1

(− sim(zi, z
′
i)/τ + log

∑
j 6=i

exp(sim(zi, zj)/τ)) (2)

20

2. Background

2.3. Persistent Homology

The field of TDA builds on the idea that the topological structure of a data set can
be useful for inference of information about the underlying data generating process.
It is a suited tool for the analysis of high-dimensional data and has been successfully
applied in a number of fields such as computer vision [12], medical imaging [13] and
computational biology [14].

TDA builds on the field of algebraic topology, a branch of mathematics dealing with
qualitative geometric information using abstract algebra. Algebraic topology is de-
voted to the precise formalization of connectivity information, such as the classification
of connected components, loops and higher dimensional surfaces in space.

A concept rooted in algebraic topology is simplicial homology, an approach to quantita-
tively and unambiguously formalize the existence of multidimensional holes contained
in spaces, so-called simplicial complexes. These topological properties are encoded by
the Betti numbers of the spaces, which represent the numbers of k-dimensional holes
in the space (k ∈ N0).

PH is a technique of the field of TDA that applies homology for examination of the
topological properties within the data. This is done by first converting the data into a
suitable representation and then monitoring how the set of k-dimensional holes within
the data evolves across different scales of observation, a so-called filtration. In other
words the persistence of the topological features (the homology classes) within the data
across different scales is analyzed. It is motivated by the assumption, that persistent
features are more meaningful than spurious ones.

Recent publications such as [1, 15, 16] have combined PH with ML to fulfill topological
constraints, such as the preservation of the homology of the input data, after the
application of an auto encoder network [1].

Given that the concept of PH is not widely recognized within the ML community, yet
has been gaining interest in recent years due to its potential as a valuable tool for
ML engineers and researchers, this work is designed to provide a brief introduction to
the fundamental principles of PH. The goal is to equip the reader with the necessary
understanding for the subsequent chapters of this work.

The basic concepts of PH are outlined in the following section. Starting with the
definition of simplicial complexes in subsection 2.3.1 basics of simplicial homology are
presented in subsection 2.3.2. Building on those foundations the key concepts of PH
are explained in subsection 2.3.3.

The structure and form of presentation is based on and inspired by the following works:
[17–21].

21

2. Background

2.3.1. Simplices and Simplicial Complexes

A way of representation of a topological space is its decomposition into simple pieces,
such as the triangulation of points in a plane, where the whole triangulation as a
topological space can be broken down into triangles. Such a decomposition is called
a complex given its pieces are topological simple and their common intersections are
lower dimensional complexes of the same kind [18]. A so-called simplicial complex is a
structure, that is employed to represent the topological space. It can be further broken
down into basic topologically simple components known as simplices 4. The following
definitions are necessary for the formulation of a simplicial complex:

Definition 2 (Affine combination) An affine combination of k + 1 points u0, . . . , uk ∈
Rd is x =

∑k
i=0 λiui if

∑k
i=0 λi = 1 with λi ∈ R.

Definition 3 (Convex combination) A convex combination of k+1 points u0, . . . , uk ∈
Rd x =

∑k
i=0 λiui is an affine combination with λi ≥ 0.

Definition 4 (Affine independence) The k+1 points u0, . . . , uk are affinely independent
if there is no affine combination of them that is equal to the zero vector.

Definition 5 (Convex hull) The convex hull conv{u0, . . . , uk} of k + 1 points
u0, . . . , uk ∈ Rd is the set of all convex combinations of these points.

Definition 6 (Simplex) A k-simplex σ is the convex hull conv{u0, . . . , uk} of k + 1
affinely independent points u0, . . . , uk.

u0 u0

u1

u0

u1u2

u0 u3

u1u2

Figure 4: A 0-, a 1-, a 2- and a 3-simplex.

In the geometric interpretation, a k-simplex is in general the simplest possible convex
polytope in a given dimension k.

In the following σ = (u0, . . . , uk) is expressing that the simplex σ is spanned by the
points u0, . . . , uk.

4singular: “simplex”

22

2. Background

For example a 3-simplex as shown on the right in Figure 4 is the convex hull of four
affinely independent points in R3: It can be decomposed into four 2-simplices (faces),
these into six 1-simplices (edges) and these into four 0-simplices (vertices).

A face τ of a simplex σ = conv{u0, . . . , uk} is a simplex itself. It is the convex hull of
a non-empty subset of {u0, . . . , uk} and is proper if the subset is not the entire set.

u0 u1

u2u3

u0 u1

u2

u0 u1

u3

u1

u2u3

u0

u2u3

Figure 5: A 3-simplex and its 2-dimensional faces.

Figure 5 shows all four 2-dimensional faces of a 3-simplex as an example. All of these
are proper faces. The 3-simplex itself would be an improper face.

Definition 7 (Simplicial complex) A simplicial complex K is a finite set of simplices
σ if σ ∈ K implies that τ ∈ K for every face τ of σ, and if σ1 ∩ σ2 ∈ K for every
non-disjoint pair σ1, σ2 ∈ K.

In simple words a simplicial complex is a set of simplices that is closed under taking
faces and intersections of the simplices [17]. Any two simplices are either disjoint
or meet in a common face. The dimension of a simplicial complex is the maximum
dimension of any of its simplices. The simplicial complex is then referred to as a
k-simplicial complex.

u0

u1
u2

u4

u5

u6

u3

u0

u1
u2

Figure 6: A 3-simplicial complex on the left and a 2-subcomplex on the right.

Definition 8 (Subcomplex) A subcomplex K ′ of a simplicial complex K is a simplicial
complex such that K ′ ⊂ K.

Figure 6 shows a 3-dimensional simplicial complex and one 2-dimensional subcomplex
for an example.

23

2. Background

u0

u1
u2

u4

u5

u6

u3

u0

u1
u2

u4

u5

u6

u3

Figure 7: A 3-simplicial complex on the left its 1-skeleton on the right.

Definition 9 (j-skeleton) A j-skeleton K(j) of a simplicial complex K is the subcomplex
of K that consists of all simplices in K of dimension at most j. K(j) = {σ ∈ K|dimσ ≤
j}.

Figure 7 shows a 3-simplicial complex and its 1-skeleton consisting of 0- and 1-simplices
(points and edges).

Considering the geometric realization of a simplicial complex is not always necessary,
and in many cases, the abstract structure alone suffices and proves to be more practical.
Hence, the subsequent definition of an abstract simplicial complex is provided:

Definition 10 (Abstract simplicial complex) An abstract simplicial complex A is a fi-
nite collection of sets such that for every X ∈ A and Y ⊆ X we have Y ∈ A.

2.3.2. Simplicial Homology

Simplicial homology is a way of quantitatively describing the topological structure of
a space building on the concept of simplices and simplicial complexes as introduced in
subsection 2.3.1. It aims to identify the topological features of the space X, namely
the number of p-dimensional holes, quantified by the so called p-th Betti number.
The underlying concept necessary for the computation of the Betti numbers are the
homology groups of a simplicial complex.

The following definitions are needed for the formal definition of homology groups and
their corresponding Betti numbers at the end of this section.

Definition 11 (p-chain) A p-chain c =
∑

αiσi of a simplicial complex K is a formal
sum of simplices σi of dimension p in K with coefficients αi ∈ Z2.

The coefficients αi count the modulo 2 multiplicity of the presence of the corresponding
simplex in the p-chain. They are either 0 or 1, because a simplex can either be part
of a chain or not. Figure 8 shows a 2-simplex. A 1-chain in this example would be
c1 = a+ b.

24

2. Background

x y

z

a

bc
A

Figure 8: A 2-simplex.

Group Generating Set Rank

C0 {x, y, z} 3
C1 {a, b, c} 3
C2 {A} 1
C3 {0} 0
Z0 = ker∂0 : C0 → 0 {x, y, z} 3
Z1 = ker∂1 : C1 → C0 {a+ b+ c} 1
Z2 = ker∂2 : C2 → C1 {0} 0
B0 = im∂1 : C1 → C0 {x+ y, y + z, z + x} 2
B1 = im∂2 : C2 → C1 {a+ b+ c} 1
B2 = im∂2 : C3 → C2 {0} 0

Table 1: The groups of the simplex in Figure 8.

The addition of two chains c1 =
∑

αiσi, c2 =
∑

βiσi is defined as the sum of the
coefficients of the chains:

Definition 12 (Addition of p-chains) c1 + c2 =
∑

αiσi +
∑

βiσi =
∑

(αi + βi)σi with
αi, βi ∈ Z2

The set of p-chains in a complex K together with the addition defined in Def. 12 forms
an abelian group because of the associativity and commutativity of the addition, the
existence of the identity element (c + 0 = c) and the existence of the inverse element
(c+ c = 0).

Definition 13 (Group of p-chains) The group of p-chains is denoted by (Cp,+) or
Cp(K) formed by the set of p-chains in K with the defined addition (Def. 12).

The boundary operator ∂p defines the boundaries of a p-simplex σ = (u0, . . . , up) as
follows:

Definition 14 (Boundary operator ∂p) ∂p(σ) =
∑p

i=0(u0, . . . , ûi, . . . , up), where ûi
means that ui is not part of the simplex.

25

2. Background

Definition 15 (Boundary of a p-chain) The boundary of a chain is defined as the sum
of the boundaries of the simplices in the chain: ∂p(c) =

∑
i αi∂p(σi)

As an example, consider the 3-simplex in Figure 8. The boundary of the edge b is
∂1(b) = y + z. The boundary of the face A is ∂2(A) = a+ b+ c.

The boundary operator is a map of p-chains to (p − 1)-chains ∂p : Cp → Cp−1 and
preserves the defined addition (Def. 12) ∂p(c1 + c2) = ∂p(c1) + ∂p(c2). Therefore it is
a homomorphism called the p-th boundary homomorphism.

Definition 16 (p-cycle) A p-cycle c is a p-chain that has no boundary, i.e., ∂p(c) = 0.

Definition 17 (Set of p-cycles) The set of p-cycles is denoted by Zp. It is a subset of
the p-chains Cp, Zp ⊆ Cp. Since every p-cycle c ∈ Zp fulfills ∂p(c) = 0 the set of the
p-cycles Zp is the kernel (nullspace) of the boundary operator ∂p: Zp = ker ∂p.

Another important subset of Cp is the set of p-boundaries Bp representing the bound-
aries of the p+ 1-chains in Cp+1:

Definition 18 (Set of p-boundaries) The set of p-boundaries is denoted by Bp. It is a
subset of the p-chains Cp, Bp ⊆ Cp. Since every p-boundary b ∈ Bp encloses a (p+1)-
simplex, the set of the p-boundaries Bp is the image of the boundary operator ∂p+1:
Bp = Im ∂p+1.

By definition, a p-boundary encloses a (p+1)-simplex in the complex and is therefore
a p-cycle. Because of that, the set of p-boundaries is a subset of the set of p-cycles,
which itself is a subset of the set of p-chains: Bp ⊆ Zp ⊆ Cp.

Since the boundary of a p-cycle is always 0 and every p-boundary is a p-cycle the
following holds:

Lemma 1 ∂p(∂p+1(σp+1)) = 0

These definitions suffice for the following definition of the p-th homology group men-
tioned in the very beginning of this section:

Definition 19 (p-th homology group) The p-th homology group is the group of equiva-
lence classes (homology classes) formed by the quotient group of the group of p-cycles
by the set of p-boundaries: Hp = Zp/Bp = ker ∂p/ Im ∂p+1

Definition 20 (Betti number) The p-th Betti number is the rank of the p-th homology
group: βp = rank(Hp) = rank(ker ∂p/ Im ∂p+1) = rank(Zp)− rank(Bp)

26

2. Background

The Betti numbers are quite intuitive. They represent the number of p-dimensional
holes in the complex. If a p-hole gets filled by a p+ 1-simplex the p-boundary bp that
encloses a p + 1-simplex in the complex is added to the generator set of the group of
boundaries Bp leading to a higher of Bp and therefore reducing the rank of the group
Hp (the p-th Betti number) by one.

Definition 21 (Chain complex) A chain complex is assembled from a set of p-chain
groups together with a set of boundary maps:

. . .
∂p+1−−−→ Cp

∂p−→ Cp−1
∂p−1−−−→ . . .

∂2−→ C1
∂1−→ C0

∂0−→ 0

2.3.3. Persistence and Filtrations

Raw point cloud data usually does not come in the form of a simplicial complex.
Therefore, homology without any adaption would not yield any useful information
from the data. This lack of connection between the data points is addressed by PH.
Through the stepwise construction of a simplicial complex from the data, connections
in the form of p-simplices between the data points are established and topological
relations can be inferred. This procedure results in a filtration, a sequence of nested
simplicial complexes starting with an empty complex and ending in the complex K
itself.

Definition 22 (filtration) A filtration of a simplicial complex K is a sequence of nested
simplicial complexes ø = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

This procedure can be thought of as a stepwise insertion of simplices to the complex
K. It depends on a chosen filtration function f : K → R, which assigns each simplex
σ ∈ K a real number that describes its time of appearance in the filtration. The
filtration function f must be non-decreasing along the increasing chain of faces, i.e.
f(σ) ≤ f(τ) for all simplices σ, τ ∈ K with σ ⊆ τ .

The Vietoris-Rips complex, originally introduced by Leopold Vietoris [22], is an ab-
stract simplicial complex frequently employed in the computation of PH for point
cloud data. It serves as a mathematical representation that captures topological fea-
tures within the point cloud data at a particular spatial scale.

Definition 23 (Vietoris-Rips complex) Given a specified scale parameter ε the
Vietoris-Rips complex Rε(X) of a point cloud dataset X contains all simplices
derived from X whose elements {x0, x1, . . .} satisfy the condition dist(xi, xj) ≤ ε for
all combinations of i and j, where dist : Rn → R is a distance metric of choice.

27

2. Background

By increasing the scale parameter ε a filtration of nested Vietoris-Rips complexes can
be produced since Rε1(X) ⊆ Rε2(X) if ε1 < ε2.

Let σi be the p-simplex that is inserted into the complex Ki to form the complex
Ki+1 and ai = f(σi) the corresponding filtration value. The insertion of σi can affect
either the homology group Hp(Ki+1) or Hp−1(Ki+1). In the first case σi closes a p-
dimensional cycle and the generator set of the group of cycles Zp(Ki+1) is extended
by one element, whereas in the second case σi fills a p-dimensional hole resulting in a
reduction of the generator set of Bp−1(Ki+1) by one element.

Since Ki ⊆ Kj for i ≤ j the inclusion induces a homomorphism f i,j
p : Hp(Ki) →

Hp(Kj) for every dimension p. The filtration results in a sequence of homology groups
for each dimension p, which elements are mapped to each other by the homomorphism:
0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn) = Hp(K).

Let Ci
p ⊆ Ki be the group of p-chains, Zi

p the group of p-cycles and Bi
p the group

of p-boundaries in the complex Ki at filtration step i. The persistent p-th homology
group is hence defined as:

Definition 24 (persistent p-th homology group) H i,j
p (K) = Im f i,j

p = Zi
p/(B

j
p∩Zi

p) for
0 ≤ i ≤ j ≤ n.

Its generator set consists of all p-cycles that are in the image of the homomorphism
f i,j
p . These are the p-cycles that come to exist latest in the filtration step i and are
filled earliest in the filtration step j. The persistent p-th homology group is hence a
measure of the topological properties of the data that are stable over the filtration
process from step i to step j.

With the persistent homology groups the persistent Betti numbers can be defined
analogously:

Definition 25 (persistent p-th Betti number) bi,jp (K) = rank(H i,j
p (K)) for i ≤ j.

They measure the number of p-dimensional holes that persist over the filtration process
from step i to step j.

Definition 26 (persistence of a homology class) The persistence of a homology class γ
that is born into Ki and dies in Kj is defined as: pers(γ) = f(σj)− f(σi) = aj − ai.

Similarly the index persistence of a class γ is defined as:

Definition 27 (index persistence of a homology class) ipers(γ) = j − i.

28

2. Background

After computation of the persistent homology groups and the persistent Betti numbers
the so-called p-th persistence diagram Dp(f) can be constructed for every dimension-
ality p. It is a multiset of points in the extended real plane R̄2 = (R ∪ {−∞,+∞})2,
and often displayed as a 2-dimensional plot, where the x-axis represents the time of
birth of a homology class in the filtration and the y-axis the time of death. Each point
in the diagram represents a homology class that is born in the filtration step i and
dies in the filtration step j. The vertical distance between the point and the diagonal
line x = y is the persistence of the class.

d
ea
th

birth
p
er
s

p
er
s

Figure 9: An example persistence diagram displaying the time of birth and time of
death of four homology classes.

Figure 9 shows an example of a persistence diagram. Entries of homology classes will
generally be in the region above the diagonal since they can not disappear from the
filtration before they appear.

The points also carry information about the multiplicity µi,j
p of the class, i.e. the

number of homology classes that are born in the filtration step i and die in the filtration
step j. The multiplicity µi,j

p can be computed from the persistent Betti numbers:

Definition 28 (multiplicity of a persistent homology class) µi,j
p = (bi,j−1

p − bi,jp) −
(bi−1,j−1

p − bi−1,j
p).

Homology classes that are born and die in the same filtration lie on the diagonal and
have infinite multiplicity out of technical reasons (see [18] for further details).

Lemma 2 (Fundamental lemma of PH) For a filtration of a simplicial complex ø =
K0 ⊆ K1 ⊆ · · · ⊆ Kn = K and every pair of indices (k, l) with 0 ≤ k ≤ l ≤ n the p-th

persistent Betti number is: bk,lp =
∑

i≤k

∑
j≥l µ

i,j
p

The lemma states that the persistent Betti numbers can be computed just by summing
over some multiplicity values in the multiset {µi,j

p } with 0 ≤ i ≤ j ≤ n that is encoded
in the persistence diagram, implying that all information about the persistence in the
filtration is encoded in the persistence diagram. This property makes the persistence
diagrams a suitable topological information source for machine learning algorithms.

29

3. Related Work

3. Related Work

This chapter reviews two research papers, which focus on the integration of PH into
unsupervised RL. These works provide a theoretical and practical basis for the ap-
proaches explored in this thesis.

3.1. Topological Autoencoders

In order to maintain the topological relationships among data points within a dataset
while simultaneously decreasing its dimensionality, Moore et al. employ an AE archi-
tecture for dimensionality reduction in [1] and formulate a differentiable topological
loss term grounded in PH.

To introduce this loss, it is imperative to establish several formal definitions in ad-
vance:

By computing all pairwise distances between elements in a given point cloud X and
organizing them into a distance matrix AX (where AX

ij = d(xi, xj)), and by utilizing
a matrix πd for every dimensionality d monitoring the indices i and j of the simplices
σi and σj in the Vietoris-Rips complex Rε̃(X) that create or destroy a topological
feature, denoted as a point (a, b) ∈ Dd in the persistence diagram, it is possible to
directly reconstruct Dd using the information from both AX and πd. Selecting the
distances from AX that correspond to the indices in πd yields a n × 2 matrix filled
with the coordinates of the n topological features in the d-dimensional persistence
diagram Dd. This matrix is denoted as AX [πd] in the following.

The paper refers to (DX , πX) as the result of a PH algorithm on the filtration of the
Vietoris-Rips complex Rε̃(X). Where DX consists of the persistence diagrams Dd in
various dimensions d and πX of the corresponding persistence pairs πd.

As illustrated in Figure 10 an AE can be seen as a composition of two mappings
f ◦ g, usually neural networks, where f : Rm → Rn is the so called encoder that maps
from the input data space X ⊂ Rm to the latent representation space Z ⊂ Rn with
n << m and g : Rn → Rm is the decoder that maps back to the reconstruction space
X ′ ⊂ Rm.

Definition 29 (Topological Signature Loss) LT = LX→Z + LZ→X

with LX→Z = 1
2‖A

X [πX]−AZ [πX]‖2
and LZ→X = 1

2‖A
Z [πZ]−AX [πZ]‖2

The topological loss term aims at harmonising the topology between a batch of in-
put data X = {x1 . . . xk} ⊂ Rm and its the latent representations Z = f(X) =
{z1 . . . zk} ⊂ Rn by comparing their d-dimensional persistence diagrams Dd. These
are generated from the filtration of the Vietoris-Rips complexes Rε̃(X) and Rε̃(Z),

30

3. Related Work

Figure 10: An overview of the method presented by Moore et al. in [1]. The graphic
was taken from the original paper.

with ε̃ representing the scale parameter at which the connectivity within Rε̃(X) or
Rε̃(Z) reaches a stable state. Note that such a stable state exists for all finite data
sets such as X and Z.

3.2. Connectivity-Optimized Representation Learning via Persistent
Homology

Similar to the Topological Autoencoder by Moore et al. in [1] described in the last
subsection, Hofer et al. [15] regularize an AEs latent space via a loss function relying
on information from PH.

Even though both works build on the AE architecture with the goal to learn useful
representations for downstream tasks incorporating PH in the process, there is a major
difference between both approaches: Instead of preserving the connectivity information
from the input space X in the representation space Y the loss function described in
this publication, termed the connectivity loss, solely acts on the latent space.

The following definitions are necessary for the formal introduction of the connectivity
loss:

Definition 30 (Death Times) With S ⊂ Rn being a finite set, (εk)
M
k=1 being the in-

creasing sequence of pairwise distance values of S and D0(S) being the 0-dimensional

31

3. Related Work

persistence diagram of S, †(S) can be defined as the multi-set of death-times

†(S) = {t : (0, εt/2) ∈ D0(S)}

with t contained in †(S) with the same multiplicity as (0, εt/2) in D0(S).

Definition 31 (Connectivity Loss) The connectivity loss Lη(S) for a hyperparameter
η ∈ R+ can then be defined:

Lη(S) =
∑

t∈†(S)

|η − εt|

It regularizes the times of death of 0-dimensional homology classes, i.e. the pairwise
distances of the 0-simplices dying at the filtration step t being incorporated into a
1-simplicial complex in the vietoris rips filtration Rεt(S) of a pointcloud S.

This loss was then successfully applied to the representation Y of a AE for One Class
Classification (OCC).

32

4. Experiments

4. Experiments

Motivated by the successful combination of the Topological Signature Loss (Definition
29) and the AE architecture in [1] this work aims at investigating if and how this
loss could also be used to enhance the quality of representations produced by a CL
architecture. For this purpose the first experiment evaluates different points of ap-
plication of the Topological Signature Loss within a prominent CL architecture. The
most promising variant is then further explored in the following experiments.

While more advanced models exist as elaborated in the theory section to CL (Section
2.2) a rather moderately complex model, the End-to-End framework SimCLR [4], is
used for all of the following experiments with the goal to ensure interpretability.

For a list of the used software packages and a link to the implementations refer to the
Appendix A.

The dataset employed for the following experiments is CIFAR-10 [23]. It is widely used
in machine learning and consists of 60,000 color images of size 32x32 in 10 different
classes. These classes include common objects such as airplanes, automobiles, birds,
cats, and more. Given that GPU memory is limited to 48 GB, the small image size
of CIFAR-10 is particularly advantageous for this use case, enabling the use of larger
batch sizes during training. This, in turn, enhances the quality of learned representa-
tions, as demonstrated by SimCLR [4]. Furthermore, Moore et al. also used CIFAR-10
for the evaluation of their topologically regularized autoencoders in [1].

4.1. Experiment 1: Variants of Topological Signature Loss

This experiment exhaustively explores possible applications of the Topological Signa-
ture Loss within the SimCLR architecture with the goal to identify the most promising
for further investigations. The End-to-End framework of SimCLR allows for multiple
variants of application of the Signature Loss:

• Variant 1: Harmonizing the topology between the augmented batches of input
data Xi, X

′
i and the projection heads outputs Zi = g(f(Xi)), Z

′
i = g(f(X ′

i)).
LT1 = LXi→Zi + LZi→Xi + LX′

i→Z′
i
+ LZ′

i→X′
i

• Variant 2: Harmonizing the topology between the augmented batches of input
data Xi, X

′
i and their representations Yi = f(Xi), Y

′
i = f(X ′

i).
LT2 = LXi→Yi + LYi→Xi + LX′

i→Y ′
i
+ LY ′

i →X′
i

• Variant 3: Harmonizing the topology between the representations Yi = f(Xi),
Y ′
i = f(X ′

i) and the projection heads outputs Zi = g(f(Xi)), Z
′
i = g(f(X ′

i)).
LT3 = LYi→Zi + LZi→Yi + LY ′

i →Z′
i
+ LZ′

i→Y ′
i

33

4. Experiments

x

ti ∼ T

t′i ∼ T

x̃i

x̃′i

f()

f()

hi

h′i

g()

g()

zi

z′i

LT V 4LT V 5

LT V 1

LT V 2

LT V 3

Figure 11: Variants of topological signature loss calculation in Experiment 1

• Variant 4: Harmonizing the topology between the projection heads output
batches Zi = g(f(Xi)) and Z ′

i = g(f(X ′
i)).

LT4 = LZ′
i→Zi

+ LZi→Z′
i

• Variant 5: Harmonizing the topology between the representation batches Yi =
f(Xi) and Y ′

i = f(X ′
i).

LT5 = LY ′
i →Yi

+ LYi→Y ′
i

Figure 11 illustrates the application points of Variants 1-5 within the SimCLR archi-
tecture.

Similar to Moore et al. in [1], Variants 1 and 2 aim to preserve the inherent topology
of the input space in the embedding space. This preservation could potentially be
advantageous for downstream tasks, especially if topological information is crucial for
solving a particular problem. Variant 3 can be viewed as a regularization of the projec-
tion head, ensuring that no topological information is discarded before the calculation
of the contrastive loss. Variants 4 and 5 encourage functions f and g to topologically
align the pairs of embedded batches of data. This alignments, similar to the con-
trastive loss, may enhance invariance to the augmentations applied to the input data,
since both the “upper” and the “lower” augmentations should become similar topology

34

4. Experiments

wise and cosine similarity wise even though different strong augmentations have been
applied to both sides.

To ensure that meaningful representations are learned during training, the total loss
term consists of one of the five variants for the signature loss LTx with x ∈ [1, 2, 3, 4, 5]
scaled by the hyperparameter λ ∈ R+ and a contrastive loss Lc, in this case, the
NT-Xent loss (Definition 1), applied to the output of the projection head:

L = Lc + λLTx

A spectrum of values [0, 1, 10, 100, 1000] for the hyperparameter λ is employed to evalu-
ate the impact of the signature loss on the training dynamics, as well as on the resultant
learned representations and projections. The training is stopped after 100 epochs per
configuration, a choice based on prior empirical observations that the learning curve
typically plateaus after approximately 100 epochs, coupled with resource constraints.
The Adam optimizer [24] is selected, with a learning rate set to 10−3 and a weight
decay of 10−6. Due to hardware limitations the batch size is limited to 512. The
temperature τ choosen for the NT-Xent loss is 0.5.

Parameter Value

Batch size [8, 64, 512]

Epochs 100

Learning rate 1× 10−3

Weight decay 1× 10−6

Optimizer Adam

λ [0, 1, 10, 100, 1000]

τ 0.5

Table 2: Hyperparameters for model training in Experiment 1

4.2. Experiment 2: Impact of Representation Dimensionality

In the course of assessing the models derived from Experiment 1 (Subsection 4.1), a
hypothesis emerged that suggested that Variant 5 of the application of the Topological
Signature Loss substantially enhances the model’s capability of embedding relevant
information for downstream tasks, utilizing a reduced number of significant principal
components. To empirically validate this hypothesis, the dimensionality N of the
representation space Y ⊂ RN , is set in this experiment via the incorporation of a
singular linear layer appended to the function f . Four variants for the embedding
dimensionality are employed. This slightly adapted architecture of SimCLR is then
trained with and without the implementation of Variant 5 of the Topological Signature
Loss exhaustively using all combinations of the hyperparameters listed in Table 3.

35

4. Experiments

Parameter Value

Batch size [8, 64, 512]

Epochs 100

Learning rate 1× 10−3

Weight decay 1× 10−6

Optimizer Adam

λ [0, 100, 1000]

τ 0.5

N [512, 1024, 1536, 2048]

Table 3: Hyperparameters for model training in Experiment 2

4.3. Experiment 3: Balance between Loss Functions

To better understand how Variant 5 of the Topological Signature Loss impacts the
performance of downstream tasks that use the learned representation, and to explore
if the Topological Signature Loss alone is suitable for contrastive learning, a new
parameter β is added to this experiment. This leads to the overall loss being calculated
in the following way:

L = (1− β)Lc + βλLTx

No additional layer is introduced to vary the representation spaces number of dimen-
sions. λ is kept constant at λ = 100. Table 4 lists the hyperparamters used for this
experiment.

Parameter Value

Batch size [8, 64, 512]

Epochs 100

Learning rate 1× 10−3

Weight decay 1× 10−6

Optimizer Adam

λ 100

β [10−3, 10−2, 10−1, 100]

τ 0.5

Table 4: Hyperparameters for model training in Experiment 3

4.4. Experiment 4: Excluding NT-Xent Regularization

A recent publication by Ben-Shaul et al. [25] that sheds more light on the underlying
mechanics of certain CL algorithms elaborated the importance of the regularization

36

4. Experiments

term within the loss term for the successful clustering of data with respect to semantic
labels.

Following their argumentation the NT-Xent loss term (Definition 1) for a positive pair
of embeddings (zi, z

′
i) can be viewed as an invariance and an regularization term:

Li = − log
exp(sim(zi, z

′
i)/τ)∑

j 6=i exp(sim(zi, z′j)/τ)

= − sim(zi, z
′
i)/τ︸ ︷︷ ︸

invariance

+ log
∑
j 6=i

exp(sim(zi, z
′
j)/τ)︸ ︷︷ ︸

regularization

The invariance term encourages the model to embed positive pairs as similar as possible
while the regularization term discourages similarity of negative pairs. The contrastive
loss Lc for the two corresponding batches of embeddings Z,Z ′ of batch size N can
then be written as:

Lc =
1

N

N∑
i=1

(− sim(zi, z
′
i)/τ + log

∑
j 6=i

exp(sim(zi, z
′
j)/τ))

= − 1

N

N∑
i=1

sim(zi, z
′
i)/τ︸ ︷︷ ︸

LcI

+
1

N

N∑
i=1

log
∑
j 6=i

exp(sim(zi, z
′
j)/τ)︸ ︷︷ ︸

LcR

To evaluate the efficacy of the Topological Signature Loss for regularization within the
CL framework SimCLR LcR is neglected in the loss calculation for this experiment.
The total loss L is then compromised as follows:

L = LcI + γLT5

Table 5 lists the hyperparamters used for this experiment.

Parameter Value

Batch size [8, 64, 512]

Epochs 100

Learning rate 1× 10−3

Weight decay 1× 10−6

Optimizer Adam

γ [10−1, 100, 101, 102]

τ 0.5

Table 5: Hyperparameters for model training in Experiment 4

37

5. Results

5. Results

This section gives a brief description of the metrics and methods used for the evaluation
of the experiments and subsequently describes the observations, useful for qualitative
insights and conclusions, that can be made upon inspection of the figures.

The assessments presented in this section aid to systematically evaluate the experi-
ments described in the last section. These assessments are crucial, to enable a deeper
understanding of the impact of the signature loss, its location and the influences of
the different hyperparameters in the experiments on various aspects of model training
and the characteristics of representations generated by the models when applied to
test data.

Loss When training neural networks with multiple loss functions, special care must
be taken, since different loss functions can vary greatly in magnitude and can negatively
affect each other when they are minimized together. One way to address these issues is
by adjusting the balance between these loss functions using a hyperparameter, referred
to as λ. In this case a higher λ leads to a higher ratio between the Topological Signature
Loss and the constrastive loss. Figure 12 visualizes this ratio for all configurations while
training for experiment 1.

Downstream Performance The arguably most important measure when analyzing
the learned representations is the performance that can be achieved utilizing the rep-
resentation for downstream tasks. To evaluate this a K-Nearest Neighbor (KNN)
classifier was applied on the representations of test data after every epoch of training.
Figures 13, 16, 19 and 22 show the evolution of the KNNs accuracy while training for
each experiment respectively.

Figures 17, 20 and 23 show the accuracy of a 2-layer MLP classifier with sigmoid acti-
vation and layer widths of 2048 and 2048 trained on the representations generated by
the various model versions after 100 epochs of training employing the various hyper-
paramters and variants of experiment 2, 3 and 4 respectively. The MLP was trained
using the Adam optimizer [24] with the learning rate set to 10−3 and the weight decay
set to 10−6. Training was stopped after 10 epochs. Figure 14 shows the accuracy of
a KNN instead of a MLP since training an MLP for every one of the 63 contrastive
models in Experiment 1 would have been very computationally expensive, while the
KNN classifier is trained in seconds and already gives useful insights into the potential
performance of each variant.

Numerical Rank The lower subplots in the figures 14, 17, 20 and 23 visualize the
numerical matrix rank of the representations, which corresponds to the number of
significant singular values in the covariance matrix of the representations produced by

38

5. Results

the models when processing test data. Here, “significant”refers to those singular values
exceeding max(S)×max(M,N)×ε, where S represents the set of singular values, M the
number of representations/test samples, N the dimensionality of the representations,
and ε the machine epsilon for the datatype of S, which is a single-precision float in
this context. This calculation was performed using numpy.linalg.matrix_rank.

Representation Space To enhance the understanding of why representations gener-
ated by the variants of contrastive learning models used in the experiments perform in
downstream tasks to a different degree, it is beneficial to examine the characteristics of
the representation space more closely then just looking at the numerical matrix rank.
For that reason, the eigenvalue spectrum of the covariance matrix derived from the
representations obtained by applying the models to unseen test data is analyzed simi-
lar as in other work to SimCLR like [10, 26]. Additionally, the singular value spectrum
of these representations when they are combined into a single M × N matrix, where
M represents the number of representations or test samples, and N indicates the di-
mensionality of these representations is inspected. The eigenvalue and singular value
spectra for each experiment and the different batch sizes 8, 64, and 512 are depicted
in Figures 15, 18, 21 and 24.

5.1. Experiment 1

Downstream Task Performance An inspection of the bar chart depicting the respec-
tive KNNs performance using the representations from a model variant after beiing
trained for 100 epochs in Figure 14 reveals that Variants 1 and 2 exhibit poor per-
formance across all batch sizes and λ values, underachieving relative to the baseline.
Variants 3 and 4 demonstrate moderate improvements over 1 and 2 but do not sur-
pass the baseline. Variant 5 stands out, maintaining relatively high performance with
increasing λ values, especially for batch sizes of 8 and 64, indicating potential for
subsequent research.

Impact of Batch Size Larger batch sizes are correlated with improved downstream
performance when training for a low number of epochs similar to this experiment, as
identified in the SimCLR paper [4]. This is due to the higher number of negative
examples present in the NT-Xent loss (Definition 1) per optimization step, leading to
faster convergence. However, this trend does not hold for Variants 1-5. Excluding λ
equal to 1 cases, where topological loss is minimal compared to contrastive loss, Vari-
ants 1 and 2 exhibit declining performance with increased batch sizes, while Variants
3, 4, and 5 peak at a batch size of 64.

39

5. Results

Figure 12: Experiment 1: Illustration of the dynamic balance between the topological
signature loss and the contrastive loss during the training. Each curve rep-
resents a different configuration, showing how varying the hyperparameter
λ influences the ratio of these two loss functions for a different different
batch size in each column.

Lambda Variation A general trend can be observed showing a decline in downstream
performance with escalating λ values. Contrarily, Variant 5 at smaller batch sizes, like
8 and 64, does not follow this pattern, where a λ of 1000 significantly boosts perfor-
mance over lower λ values for batch size 8 and and just slightly reduces performance
for batch size 64 but not as drastically as for Variants 1-4. It is evident that a higher
λ accelerates dimensional collapse, more so with smaller batch sizes where its impact
is amplified.

Representation Space The dimensional collapse intensifies with the smaller batch
sizes (8 and 64), as can be seen in Figure 14, indicated by the matrix rank in the lower
subplot. Variant 5 is notably quick to collapse. Figure 15 shows the eigen and singular

40

5. Results

value spectra of Variant 5 and the baseline model. What stands out is, that at a batch
size of 64 and a λ of 1000, Variant 5’s eigen and singular value spectra, although lower
overall, decline more gradually than for other λ values, while its downstream task
performance still nearly matches the baseline despite the spectrum’s lowered scale.
For a batch size of 8, the spectrum at λ = 1000 not only is lower but also declines
more rapidly compared to λ values of 1, 10, and 100, but still achieves comparable
performance to the baseline.

5.2. Experiment 2

Training Procedure Investigation of the experiment through Figure 16 reveals that
the increasement of λ leads to a delayed improvement in the downstream task perfor-
mance for batch sizes 8 and 64. However, for batch size 512, Variant 5’s downstream
tasks performance did not improve within the first 100 epochs of training at all. Fur-
thermore, when comparing the training curves of the same setups with different sizes of
representation dimensions, no major differences are noticeable. This suggests that the
performance doesn’t change much with the change in representation dimensionality in
these particular settings.

Downstream Task Performance In contrast to Experiment 1 Figure 17 exhibits a
general trend wherein an increased level of topological regularization correlates with
a decrease in downstream task performance. Notably, while models with topological
regularization trained on batch sizes of 8 and 64 respectively maintained reasonably
good performance when use to produce representations for the classification task, their
performance was significantly inferior to the baseline model when trained with a batch
size of 512.

Furthermore, the performance of the models when used for downstream tasks appears
to be largely unaffected by variations in the number of representation dimensions.
This could imply that the relevant information for this classification task and the
chosen dataset lies on a low dimensional manifold with a dimensionality n < 512 in
the representation space, which still can be constructed by f even when restricted to
only use 512 dimensions.

Representation Space Based on the eigenvalue spectra in Figure 18, no new insights
emerge from this experiment.

5.3. Experiment 3

Training Procedure Some interesting insights can be found in Figure 19 visualizing
the performance of a KNN classifier for every epoch of the training procedure: For

41

5. Results

β = 1, which implies that the optimizer exclusively relies on the Topological Signature
Loss Lt without the contrastive loss Lc, the downstream performance for batch sizes 8
and 64 collapses to a level comparable to random guessing, whereas at a batch size of
512 the model only manages to preserve initial KNN performance but not to improve
it. Conclusively the Topological Signature Loss alone does not suffice for contrastive
learning, at least with this architecture.

Conversely, for other values of β, the learning curves are remarkably similar across
batch sizes 8 and 64, with only minor variations observable. This suggests a degree
of consistency in the model’s learned representations across these β values in smaller
batch sizes.

However, another notable divergence can be seen in the performance for β = 0.1 at
a batch size of 512, which results in significantly poorer performance compared to
the other settings. For the other β settings, the learning curves are again relatively
similar.

Downstream Performance Similar to the findings in Experiment 2, an increase in
the level of topological regularization (reflected by higher β values) correlates with a
decrease in downstream task performance. Interestingly the MLP in Figure 20, for a
batch size of 512 and β = 1, achieves only an accuracy equivalent to random guessing
(approximately 10%). In contrast, the KNN classifier, fitted after every training epoch,
consistently maintained an accuracy around 30% as illustrated in Figure 19. This
disparity highlights a methodological problem in this research: simpler approaches,
such as using a shallow MLP, might not be adequate for evaluating the effectiveness
of the representations generated by the models. Although the KNN classifier is not
particularly complex, it yields superior performance in this context. This discrepancy
opens up room for further research, which could involve evaluating different types of
classification algorithms on the representations produced by CL models incorporating
topological regularization.

Representation Space Figure 21 visualizes that as in the previous experiments a
higher degree of topological regularization in this loss configuration leads to faster
collapses of the eigenvalue and singular value spectra.

5.4. Experiment 4

Training Procedure As visualized in Figure 22, in this setup, the initial performance
of the KNN algorithm was roughly 30%. This performance was only sustained for
a batch size of 512. However, for batch sizes of 8 and 64, the performance rapidly
decreased to 10% - equivalent to random guess accuracy for this dataset - within 10
and 60 epochs, respectively. A notable observation was that a higher value of γ resulted
in a slower decline in KNN performance during training.

42

5. Results

Downstream Performance When applying a MLP to the learned representations for
classifying new test data, the results were poorer than the KNN classifier, with an
accuracy around 10%, mirroring the random guess accuracy for this dataset.

Representation Space The eigenvalue and singular value spectra of the covariance
matrices, corresponding to the representations generated with varying γ values for
batch sizes 8 and 64, showed an immediate collapse after the first index. Therefore,
they are not included in Figure 24. For a batch size of 512, a pattern emerged, revealing
an earlier collapse of the spectra at lower values of γ. This was the only experiment
in this study that demonstrated a dimensional collapse for a batch size of 512 and
Variant 5 of the Topological Signature Loss function.

43

5. Results

Figure 13: Experiment 1: Illustration of the progression of a KNN classifiers accuracy
over each training epoch, applied to the representations of test data for
different training batch sizes and all variants of the loss calculation with
different values for λ, as well as the baseline model. The purple line marks
the accuracy for random guessing (10%).

44

5. Results

Figure 14: Experiment 1: The top row displays the accuracy achieved by a KNN
classifier when applied to the generated representations for all five variants
and different batch sizes, which vary by column. The bottom row illustrates
the numerical rank of these representations.

45

5. Results

Figure 15: Experiment 1: Eigenvalue spectra of the covariance matrix of produced
representations by the baseline model and the Variant 5 with different val-
ues for λ (top column) and the respective singular value spectra (bottom
column) for different batch sizes varying by column.

46

5. Results

Figure 16: Experiment 2: Illustration of the progression of a KNN classifiers accuracy
over each training epoch, applied to the representations of test data for dif-
ferent training batch sizes and different representation dimensionalities.The
purple line marks the accuracy for random guessing (10%).

47

5. Results

Figure 17: Experiment 2: The top row displays the accuracy achieved by a MLP classi-
fier when applied to the generated representations for all four representation
dimensionalities and different batch sizes, which vary by column. The bot-
tom row illustrates the numerical rank of these representations.

48

5. Results

Figure 18: Experiment 2: Eigenvalue spectra of the covariance matrix of the generated
representations by the base model and variant 5 with different values for λ
for different embedding dimensionalities varying by row and different batch
sizes varying by column.

49

5. Results

Figure 19: Experiment 3: Illustration of the progression of a KNN classifiers accuracy
over each training epoch, applied to the representations of test data for
different training batch sizes and different values for β. The purple line
marks the accuracy for random guessing (10%).

Figure 20: Experiment 3: The top row displays the accuracy achieved by a MLP
classifier when applied to the generated representations for all five betas
and different batch sizes, which vary by column. The bottom row illustrates
the numerical rank of these representations.

50

5. Results

Figure 21: Experiment 3: Eigenvalue spectra of the covariance matrix of produced
representations by the Variant 5 with different values for β (top column)
and the respective singular value spectra (bottom column) for different
batch sizes varying by column.

Figure 22: Experiment 4: Illustration of the progression of a KNN classifiers accuracy
over each training epoch, applied to the representations of test data for
different training batch sizes and different values for γ. The purple line
marks the accuracy for random guessing (10%).

51

5. Results

Figure 23: Experiment 4: The plot displays the accuracy achieved by a MLP classifier
when applied to the generated representations for all four γ values and
different batch sizes, which vary by column. Since the numerical rank of all
representations was 1 the plot of the ranks was omitted for this experiment.

Figure 24: Experiment 4: Eigenvalue spectra of the covariance matrix of produced
representations with different values for γ (top column) and the respective
singular value spectra (bottom column) only for batch size 512 since the
spectra for batch sizes 8 and 64 collapsed at index 1 and thus did not yield
any more insights.

52

6. Discussion

6. Discussion

Findings from Experiment 1 This experiment explored five different ways to apply
the Topological Signature Loss within the SimCLR architecture, each variant focusing
on different aspects of the data and representation layers. The goal was to see how
these variants affect the embedding space and to assess their impact on downstream
tasks.

In this exhaustive investigation it was discovered that versions V1 through V4 were
ineffective due to poor performance.

Specifically, for V1 and V2, comparing the topological structures of vectorized image
batches to their corresponding embeddings yields limited insights. Notably, minor
image augmentations lead to significant changes in their vectorizations, while the em-
beddings, produced by functions f and g, should show less drastic alterations due to
augmentation invariance by information distillation. This observation suggests that
topological regularization might be detrimental in these two scenarios.

For V3, employing the Topological Signature Loss facilitated a topology-preserving
dimension reduction by the projection head, similar to the approach used in the
topology-preserving autoencoder by Moore et al. [1]. Despite this, such reduction
did not enhance the performance in the subsequent task that utilizes the latent repre-
sentation before the projection.

Versions V4 and V5 function similarly to the NT-Xent loss in a contrastive context.
However, V4’s performance continually declines as the value of λ increases, presenting
no additional noteworthy effects.

Contrastingly, V5 demonstrates effective performance with both batch sizes 8 and 64.
As shown in Figure 15, V5 maintains baseline performance while using fewer significant
principal components.

A possible hypothesis concluded from this observations would be, that this efficiency
in embedding relevant information for downstream tasks suggests that the Topological
Signature Loss is beneficial in this setting. Topological regularization might be advan-
tageous for SimCLR with smaller batch sizes. The rationale is that the topology of
smaller batches, particularly with the strong augmentations used in CL, varies more
significantly. While this variance tends to average out with larger batches, for smaller
batch sizes, topological regularization may be crucial in offsetting this effect, poten-
tially providing a more structured and beneficial representation space for downstream
tasks.

Findings from Experiment 2 The focus here was on how the dimensionality of the
representation space affects the model’s ability to embed relevant information for down-
stream tasks. Different embedding dimensionalities are tested, both with and without

53

6. Discussion

the implementation of Variant 5 of the Topological Signature Loss, to assess its influ-
ence on the quality of representations.

The hypothesis from Experiment 1, suggesting that V5 creates more efficient embed-
dings, was not supported, and in fact, contradicted by this experiment. The intro-
duction of an additional layer for dimension reduction following function f did not
significantly diminish performance of the baseline nor the versions using the Topolog-
ical Signature Loss. However, the integration of the Topological Signature Loss was
found to be ineffective in this context, and it even resulted in a substantial decline in
performance, particularly for a batch size of 512.

Conclusively the topological regularisation as applied in this experiment does not lead
to better aligned embeddings.

Findings from Experiment 3 This experiment investigated the interplay between
the contrastive loss and the Topological Signature Loss (Variant 5) in the SimCLR
framework. A new parameter, β, was introduced to adjust the balance between these
two loss functions, aiming to understand their combined effect on the performance in
downstream tasks.

A slight topological regularization appeared to have just a small negative effect on
the performance in the downstream task when using smaller batch sizes. Both the
eigenvalue and singular value spectra indicate a more rapid dimensional collapse when
topological regularization is increased.

Furthermore, in this CL framework, relying solely on the Topological Signature Loss
did not yield effective representations for subsequent tasks.

Findings from Experiment 4 In this experiment, the regularization component of
the NT-Xent loss was excluded to evaluate the role of the Topological Signature Loss
in regularization within the CL framework. The focus was on understanding the
effectiveness of the Topological Signature Loss in maintaining data clustering relevant
to semantic labels when the regularization aspect of NT-Xent is removed.

Only relying on the Topological Signature Loss for regularization did not yield useful
representations at all, at least with the γ values used in this experiment. Two interest-
ing trends emerged which suggest to further investigate this configuration with higher
γ values, corresponding to a higher degree of topological regularization:

• Higher γ values led to a delayed decline of the KNNs performance in the training
procedure for batch sizes 8 and 64.

• Higher γ values led to delayed dimensional collapse of the eigenvalue and singular
value spectra for batch size 512. This stands in direct contrast to experiment
3 where the additional regularization through the Topological Signature Loss
accelerated the dimensional collapse.

54

6. Discussion

Criticism of the study of eigenvalue spectra The analysis of eigenvalue spectra con-
ducted in the study often shows a discrepancy between the performance of the models
in downstream tasks and their numerical rank or the amplitude of the eigenvalue spec-
trum. The interpretation of eigenvalue spectra falls into the realm of linear algebra
(emphasizing linear relationships). Assessing the usefulness of a representation space
solely through the analysis of the eigenvalue spectrum inherently presumes that the
features or principal components are non-linearly disentangled. However, this aspect
is often not true, so that the practical relevance can be low and the findings based on
this assumption may be only of limited importance.

Problem with large batch sizes and the Topological Signature Loss In experiments
1-3, it became clear that topological regularization had a negative effect on downstream
task performance when training was performed with a large batch size.

Unfortunately, the requirements with regard to the training of SimCLR and the ap-
plication of the Topological Signature Loss are in direct conflict in terms of batch size:
Moore et al. found in their paper on the topology-preserving autoencoder that smaller
batch sizes are particularly suitable for its application. In particular they used a batch
size of 82 for their experiments with CIFAR-10.

Chen et al. on the other hand, recognized that SimCLR could be trained particularly
well with very large batch sizes (≥ 512) as the regularization part of the NT-Xent loss
benefits from a high number of negative pairs.

In addition to SimCLR, however, there are also CL models such as MoCov [7] and
VICReg [27], which achieve similarly good results decoupled from the batch size. For
further investigations of the combination of CL and Topological Signature Losses in
subsequent work, one of these models should be used.

55

7. Conclusion

7. Conclusion

The experiments conducted to investigate the impact of topological regularization
within the SimCLR framework in CL yielded several important insights and directions
for future research. These are summarized as follows:

Experiment 1: Variants of Topological Signature Loss Explored five different vari-
ants of applying the topological signature loss within the SimCLR architecture.

• Ineffectiveness of V1-V4: Variants 1 to 4 demonstrated suboptimal performance,
indicating that their modes of integrating topological regularization do not con-
tribute positively to the learning process or downstream task efficacy.

• Effectiveness of V5: Variant 5 emerged as a notable exception, maintaining
relatively high performance, particularly for smaller batch sizes. This suggests
that the manner of topological regularization in V5 might be beneficial in certain
contexts, especially for smaller batches under strong augmentations.

• Role of Batch Size and degree of topological Regularization: Larger batch sizes
typically correlated with improved performance in the downstream task, but this
was not consistently observed across all variants. A aigher degree of regulariza-
tion generally led to a decreased performance, with Variant 5 again being an
exception in certain conditions.

Experiment 2: Impact of Representation Dimensionality Assessed the impact of
representation dimensionality on the model’s performance, especially when using Vari-
ant 5 of the topological signature loss and employed different embedding dimensionali-
ties to explore the model’s efficiency in embedding relevant information for downstream
tasks.

• Dimensionality and Performance: Adjusting the number of dimensions in the
representation space did not significantly affect model performance, implying
that relevant information for classification might reside on a lower-dimensional
manifold within the representation space.

• Negative Impact of Topological Regularization: An increased level of topological
regularization generally led to a decreased performance, particularly noticeable
for larger batch sizes.

Experiment 3: Balance between Loss Functions Introduced a new parameter, β,
to explore the balance between the topological signature loss and the contrastive loss
(NT-Xent loss).

56

7. Conclusion

• Insufficiency of Topological Loss Alone: Sole reliance on topological loss for
smaller batch sizes significantly impaired the performance, indicating its insuffi-
ciency as the sole regularizer in this context.

• Consistency Across Batch Sizes: For beta values less than 1, the learning curves
were similar across smaller batch sizes, suggesting consistency in the model’s
learned representations.

Experiment 4: Excluding NT-Xent Regularization Evaluated the effectiveness of
the topological signature loss (Variant 5) for regularization by excluding the regular-
ization term of the NT-Xent loss in the SimCLR framework.

• Need for Regularization: Eliminating the regularization component of the NT-
Xent loss and relying solely on topological regularization did not yield perfor-
mance improvements, at least with the degree of regularization used in this
configuration, highlighting the importance of a balanced approach between in-
variance and regularization in CL.

General Observations and Criticism

• Eigenvalue Spectra Analysis: The analysis often revealed a disconnection be-
tween the models’ downstream task performance and their numerical rank or
eigenvalue spectra, suggesting limitations in using the eigenvalue spectrum anal-
ysis as a quality indicator.

• Large Batch Size Problem: Topological regularization consistently showed a
negative effect on performance with large batch sizes, posing a challenge for
models like SimCLR which benefit from larger batch sizes.

Future Research Directions

• Continuing Experiment 4: Higher γ values corresponding to a higher degree of
topological regularization may lead to better results.

• Exploring Other CL Models: Future research should consider other CL models,
such as MoCo [6] or VICReg [27], which are less dependent on large batch sizes.

• Exploring Other Loss Functions: Besides the topological signature loss [1], there
exist other loss functions built on PH like the connectivity loss (Definition 31),
which could be of use within the CL framework.

In conclusion, while topological regularization, particularly in the form applied in
Variant 5, shows potential in enhancing CL models, its integration is complex and
necessitates careful consideration of model architecture and training dynamics. Overall
these findings provide a foundation for future research in embedding topological aspects
into CL frameworks.

57

List of Figures

List of Figures

1. The same underlying data presented in cartesian and polar coordinates. 10
2. The general contrastive learning framework consisting of an input sam-

ple x ∈ X two different augmentations ti, t
′
i ∈ T , the augmented ver-

sions of the image xi, x
′
i ∈ RN the encoder network f : RN → RM the

representations yi, y
′
i ∈ RM the projection head g : RM → RK and the

embeddings zi, z
′
i ∈ RK on which the contrastive loss is then calculated. 14

3. Different augmentations applied to an image. 20
4. A 0-, a 1-, a 2- and a 3-simplex. 22
5. A 3-simplex and its 2-dimensional faces. 23
6. A 3-simplicial complex on the left and a 2-subcomplex on the right. . 23
7. A 3-simplicial complex on the left its 1-skeleton on the right. 24
8. A 2-simplex. 25
9. An example persistence diagram displaying the time of birth and time

of death of four homology classes. 29
10. An overview of the method presented by Moore et al. in [1]. The graphic

was taken from the original paper. 31
11. Variants of topological signature loss calculation in Experiment 1 . . . 34
12. Experiment 1: Illustration of the dynamic balance between the topo-

logical signature loss and the contrastive loss during the training. Each
curve represents a different configuration, showing how varying the hy-
perparameter λ influences the ratio of these two loss functions for a
different different batch size in each column. 40

13. Experiment 1: Illustration of the progression of a KNN classifiers ac-
curacy over each training epoch, applied to the representations of test
data for different training batch sizes and all variants of the loss calcu-
lation with different values for λ, as well as the baseline model. The
purple line marks the accuracy for random guessing (10%). 44

14. Experiment 1: The top row displays the accuracy achieved by a KNN
classifier when applied to the generated representations for all five vari-
ants and different batch sizes, which vary by column. The bottom row
illustrates the numerical rank of these representations. 45

15. Experiment 1: Eigenvalue spectra of the covariance matrix of produced
representations by the baseline model and the Variant 5 with different
values for λ (top column) and the respective singular value spectra
(bottom column) for different batch sizes varying by column. 46

16. Experiment 2: Illustration of the progression of a KNN classifiers ac-
curacy over each training epoch, applied to the representations of test
data for different training batch sizes and different representation di-
mensionalities.The purple line marks the accuracy for random guessing
(10%). 47

58

List of Figures

17. Experiment 2: The top row displays the accuracy achieved by a MLP
classifier when applied to the generated representations for all four rep-
resentation dimensionalities and different batch sizes, which vary by
column. The bottom row illustrates the numerical rank of these repre-
sentations. 48

18. Experiment 2: Eigenvalue spectra of the covariance matrix of the gen-
erated representations by the base model and variant 5 with different
values for λ for different embedding dimensionalities varying by row and
different batch sizes varying by column. 49

19. Experiment 3: Illustration of the progression of a KNN classifiers ac-
curacy over each training epoch, applied to the representations of test
data for different training batch sizes and different values for β. The
purple line marks the accuracy for random guessing (10%). 50

20. Experiment 3: The top row displays the accuracy achieved by a MLP
classifier when applied to the generated representations for all five be-
tas and different batch sizes, which vary by column. The bottom row
illustrates the numerical rank of these representations. 50

21. Experiment 3: Eigenvalue spectra of the covariance matrix of produced
representations by the Variant 5 with different values for β (top column)
and the respective singular value spectra (bottom column) for different
batch sizes varying by column. 51

22. Experiment 4: Illustration of the progression of a KNN classifiers ac-
curacy over each training epoch, applied to the representations of test
data for different training batch sizes and different values for γ. The
purple line marks the accuracy for random guessing (10%). 51

23. Experiment 4: The plot displays the accuracy achieved by a MLP clas-
sifier when applied to the generated representations for all four γ values
and different batch sizes, which vary by column. Since the numerical
rank of all representations was 1 the plot of the ranks was omitted for
this experiment. 52

24. Experiment 4: Eigenvalue spectra of the covariance matrix of produced
representations with different values for γ (top column) and the respec-
tive singular value spectra (bottom column) only for batch size 512 since
the spectra for batch sizes 8 and 64 collapsed at index 1 and thus did
not yield any more insights. 52

59

Glossary

Glossary

β-VAE β - Variational Auto Encoder

AE Autoencoder

CL Contrastive Representation Learning

CNN Convolutional Neural Network

DL Deep Learning

KNN K-Nearest Neighbor

LSTM Long Short Term Memory

ML Machine Learning

MLP Multi-layer Perceptron

OCC One Class Classification

PCA Principal Component Analysis

PH Persistent Homology

RL Representation Learning

TDA Topological Data Analysis

VAE Variational Auto Encoder

60

List of Tables

List of Tables

1. The groups of the simplex in Figure 8. 25
2. Hyperparameters for model training in Experiment 1 35
3. Hyperparameters for model training in Experiment 2 36
4. Hyperparameters for model training in Experiment 3 36
5. Hyperparameters for model training in Experiment 4 37
6. List of used python packages . 65

61

References

References

[1] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. “Topological
Autoencoders”. In: International Conference on Machine Learning 37 (2019),
pp. 7001–7011. doi: 10.48550/arxiv.1906.00722 (cit. on pp. 7, 21, 30, 31, 33,
34, 53, 57, 65).

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 9, 11).

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning:
A Review and New Perspectives”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 35.8 (Aug. 2013), pp. 1798–1828. doi: 10.1109/TPAMI.
2013.50 (cit. on pp. 9, 12, 19).

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Everest Hinton.
“A Simple Framework for Contrastive Learning of Visual Representations”. In:
2020 (cit. on pp. 16–19, 33, 39).

[5] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. “Unsupervised Fea-
ture Learning via Non-parametric Instance Discrimination”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 3733–3742.
doi: 10.1109/CVPR.2018.00393 (cit. on p. 16).

[6] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momen-
tum Contrast for Unsupervised Visual Representation Learning”. In: June 2020,
pp. 9726–9735. doi: 10.1109/CVPR42600.2020.00975 (cit. on pp. 16, 17, 57).

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved Baselines
with Momentum Contrastive Learning. 2020. arXiv: 2003.04297 [cs.CV] (cit.
on pp. 17, 55).

[8] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski,
and Armand Joulin. “Unsupervised Learning of Visual Features by Contrasting
Cluster Assignments”. In: Advances in Neural Information Processing Systems.
Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 9912–9924 (cit. on p. 17).

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. “Improved base-
lines with momentum contrastive learning”. In: arXiv preprint arXiv:2003.04297
(2020) (cit. on p. 18).

[10] Kartik Gupta, Thalaiyasingam Ajanthan, Anton van den Hengel, and Stephen
Gould. “Understanding and improving the role of projection head in self-
supervised learning”. In: arXiv preprint arXiv:2212.11491 (2022) (cit. on pp. 18,
39).

[11] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. “Unsupervised
Feature Learning via Non-Parametric Instance-level Discrimination”. In: CoRR
abs/1805.01978 (2018). arXiv: 1805.01978 (cit. on p. 20).

62

References

[12] Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar
Carlsson, and Dario L. Ringach. “Topological analysis of population activity in
visual cortex”. In: Journal of Vision 8 (2008), pp. 11–11. doi: 10.1167/8.8.11
(cit. on p. 21).

[13] Bastian Rieck, Tristan Yates, Christian Bock, Karsten Borgwardt, Guy Wolf,
Nicholas Turk-Browne, and Smita Krishnaswamy. “Uncovering the Topology of
Time-Varying fMRI Data using Cubical Persistence”. In: Advances in neural
information processing systems 33 (2020), pp. 6900–6912 (cit. on p. 21).

[14] Kelin Xia and Guo-Wei Wei. “Multidimensional persistence in biomolecular
data”. In: Journal of Computational Chemistry 36 (2015), pp. 1502–1520. doi:
https://doi.org/10.1002/jcc.23953 (cit. on p. 21).

[15] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Mandar Dixit.
“Connectivity-Optimized Representation Learning via Persistent Homology”.
In: International Conference on Machine Learning 36 (2019), pp. 2751–2760
(cit. on pp. 21, 31).

[16] Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang.“A Topological Regularizer
for Classifiers via Persistent Homology”. In: Proceedings of Machine Learning
Research 89 (2019), pp. 2573–2582 (cit. on p. 21).

[17] Stefan Huber. “Persistent Homology in Data Science”. In: Data Science – Ana-
lytics and Applications 3 (2021), pp. 81–88 (cit. on pp. 21, 23).

[18] Herbert Edelsbrunner and John Harer. Computational topology: an introduction.
American Mathematical Society, 2010, p. 241 (cit. on pp. 21, 22, 29).

[19] Herbert Edelsbrunner and John Harer. “Persistent homology - a survey”. In:
Discrete and Computational Geometry - DCG 453 (2008). doi: 10.1090/conm/
453/08802 (cit. on p. 21).

[20] Robert W. Ghrist. Elementary applied topology. Createspace Independent Pub-
lishing Platform, 2014 (cit. on p. 21).

[21] Gunnar Carlsson. “Topology and Data”. In: BULLETIN of the American Math-
ematical Society 46 (2 2009), pp. 255–308 (cit. on p. 21).

[22] L. Vietoris. “Über den höheren Zusammenhang kompakter Räume und eine
Klasse von zusammenhangstreuen Abbildungen”. In: Mathematische Annalen
97 (1 1927). doi: 10.1007/BF01447877 (cit. on p. 27).

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian In-
stitute for Advanced Research). url: http://www.cs.toronto.edu/~kriz/
cifar.html (cit. on p. 33).

[24] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed.
by Yoshua Bengio and Yann LeCun. 2015 (cit. on pp. 35, 38).

63

References

[25] Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, and Yann LeCun.
“Reverse Engineering Self-Supervised Learning”. In: Thirty-seventh Conference
on Neural Information Processing Systems. 2023 (cit. on p. 36).

[26] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. “Understand-
ing Dimensional Collapse in Contrastive Self-supervised Learning”. In: CoRR
abs/2110.09348 (2021). arXiv: 2110.09348 (cit. on p. 39).

[27] Adrien Bardes, Jean Ponce, and Yann LeCun. “VICReg: Variance-
Invariance-Covariance Regularization for Self-Supervised Learning”. In: CoRR
abs/2105.04906 (2021). arXiv: 2105.04906 (cit. on pp. 55, 57).

64

A. Used Software Packages

A. Used Software Packages

The pytorch implementation of SimCLR und the experiments of this work can be
found under https://github.com/simonschindler/masterthesisSiS.

For the calculation of the Topological Signature Loss (Definition 29) the implemen-
tation of the authors of the original paper [1] was used, which can be found under
https://github.com/BorgwardtLab/topological-autoencoders.

The following python packages were used:

Table 6: List of used python packages

Package Version

absl-py 1.3.0
aiohttp 3.8.3
aiosignal 1.3.1
alembic 1.12.0
anyio 4.1.0
appdirs 1.4.4
argon2-cffi 23.1.0
argon2-cffi-bindings 21.2.0
arrow 1.3.0
asttokens 2.2.1
astunparse 1.6.3
async-lru 2.0.4
async-timeout 4.0.2
attrs 22.2.0
Babel 2.13.1
backcall 0.2.0
backports.functools-lru-cache 1.6.4
beautifulsoup4 4.12.2
black 22.10.0
bleach 6.1.0
blinker 1.6.3
brotlipy 0.7.0
cached-property 1.5.2
cachetools 5.2.0
certifi 2023.7.22
cffi 1.15.1
charset-normalizer 2.1.1
click 8.1.3
cloudpickle 2.2.1
colorama 0.4.6

Continued on next page

65

A. Used Software Packages

Table 6 – continued from previous page

Package Version

comm 0.1.2
contourpy 1.0.6
cryptography 39.0.0
cycler 0.11.0
Cython 0.29.32
databricks-cli 0.18.0
debugpy 1.6.4
decorator 5.1.1
defusedxml 0.7.1
Deprecated 1.2.13
dill 0.3.6
dm-tree 0.1.7
docker 6.1.3
docopt 0.6.2
entrypoints 0.4
etils 0.9.0
exceptiongroup 1.2.0
executing 1.2.0
fastjsonschema 2.16.2
Flask 2.3.3
flatbuffers 23.1.4
fonttools 4.38.0
fqdn 1.5.1
frozenlist 1.3.3
gast 0.4.0
gitdb 4.0.11
GitPython 3.1.40
google-auth 2.15.0
google-auth-oauthlib 0.4.6
google-pasta 0.2.0
googleapis-common-protos 1.57.1
greenlet 3.0.0
grpcio 1.47.1
gunicorn 21.2.0
h5py 3.7.0
hopcroftkarp 1.2.5
idna 3.4
importlib-metadata 6.0.0
importlib-resources 5.10.2
ipykernel 6.19.4

Continued on next page

66

A. Used Software Packages

Table 6 – continued from previous page

Package Version

ipympl 0.9.2
ipython 8.8.0
ipython-genutils 0.2.0
ipywidgets 8.0.4
isoduration 20.11.0
isort 5.12.0
itsdangerous 2.1.2
jedi 0.18.2
Jinja2 3.1.2
joblib 1.2.0
json5 0.9.14
jsonpickle 3.0.2
jsonpointer 2.4
jsonschema 4.20.0
jsonschema-specifications 2023.11.1
jupyter client 7.4.8
jupyter core 5.1.2
jupyter-events 0.9.0
jupyter-lsp 2.2.1
jupyter server 2.11.1
jupyter server terminals 0.4.4
jupyterlab 4.0.9
jupyterlab pygments 0.3.0
jupyterlab server 2.25.2
jupyterlab-widgets 3.0.5
kaggle 1.5.16
keras 2.10.0
Keras-Preprocessing 1.1.2
kiwisolver 1.4.4
kmapper 2.0.1
llvmlite 0.40.1
Mako 1.2.4
Markdown 3.4.1
MarkupSafe 2.1.1
matplotlib 3.6.2
matplotlib-inline 0.1.6
mistune 3.0.2
mlflow 2.7.1
multidict 6.0.4
munch 2.5.0

Continued on next page

67

A. Used Software Packages

Table 6 – continued from previous page

Package Version

munkres 1.1.4
mypy-extensions 0.4.3
nbclient 0.9.0
nbconvert 7.11.0
nbformat 5.7.1
nest-asyncio 1.5.6
notebook 7.0.6
notebook shim 0.2.3
numba 0.57.1
numpy 1.24.1
oauthlib 3.2.2
opencv-python 4.8.1.78
opt-einsum 3.3.0
overrides 7.4.0
packaging 22.0
pandas 1.5.2
pandocfilters 1.5.0
parso 0.8.3
pathspec 0.10.3
persim 0.3.1
pexpect 4.8.0
pickleshare 0.7.5
Pillow 9.4.0
pip 22.3.1
pkgutil resolve name 1.3.10
platformdirs 2.6.2
plotly 5.18.0
ply 3.11
pooch 1.6.0
prometheus-client 0.19.0
promise 2.3
prompt-toolkit 3.0.36
protobuf 4.21.12
psutil 5.9.4
ptyprocess 0.7.0
pure-eval 0.2.2
py-cpuinfo 9.0.0
pyarrow 13.0.0
pyasn1 0.4.8
pyasn1-modules 0.2.7

Continued on next page

68

A. Used Software Packages

Table 6 – continued from previous page

Package Version

pycparser 2.21
Pygments 2.14.0
PyJWT 2.6.0
pyOpenSSL 23.0.0
pyparsing 3.0.9
PyQt5 5.15.7
PyQt5-sip 12.11.0
pyrsistent 0.19.3
PySocks 1.7.1
python-dateutil 2.8.2
python-json-logger 2.0.7
python-slugify 8.0.1
pytz 2022.7
pyu2f 0.1.5
PyYAML 6.0.1
pyzmq 24.0.1
querystring-parser 1.2.4
referencing 0.31.0
requests 2.31.0
requests-oauthlib 1.3.1
rfc3339-validator 0.1.4
rfc3986-validator 0.1.1
ripser 0.6.4
rpds-py 0.13.1
rsa 4.9
sacred 0.8.4
scikit-learn 1.2.0
scikit-tda 1.0.0
scipy 1.10.0
Send2Trash 1.8.2
setuptools 65.6.3
sip 6.7.5
six 1.16.0
smmap 5.0.1
sniffio 1.3.0
soupsieve 2.5
SQLAlchemy 2.0.22
sqlparse 0.4.4
stack-data 0.6.2
tabulate 0.9.0

Continued on next page

69

A. Used Software Packages

Table 6 – continued from previous page

Package Version

tadasets 0.0.4
tenacity 8.2.3
tensorboard 2.10.1
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorflow 2.10.0
tensorflow-datasets 4.8.1+nightly
tensorflow-estimator 2.10.0
tensorflow-metadata 1.12.0
termcolor 2.2.0
terminado 0.18.0
text-unidecode 1.3
threadpoolctl 3.1.0
tinycss2 1.2.1
tokenize-rt 5.0.0
toml 0.10.2
tomli 2.0.1
torch 1.13.0.post200
torchvision 0.14.0a0+2ba5a5d
tornado 6.2
tqdm 4.64.1
traitlets 5.8.0
types-python-dateutil 2.8.19.14
typing extensions 4.4.0
umap-learn 0.3.10
unicodedata2 15.0.0
uri-template 1.3.0
urllib3 1.26.13
wcwidth 0.2.5
webcolors 1.13
webencodings 0.5.1
websocket-client 1.6.4
Werkzeug 3.0.1
wheel 0.38.4
widgetsnbextension 4.0.5
wrapt 1.14.1
yarl 1.8.2
zipp 3.11.0

70

	1 Introduction
	2 Background
	2.1 Representation Learning
	2.1.1 Introduction
	2.1.2 Forms of Representation Learning
	2.1.3 Deep Learning as Representation Learning

	2.2 Contrastive Representation Learning
	2.2.1 General Framework
	2.2.2 Architectures
	2.2.3 Projection Head
	2.2.4 Augmentations
	2.2.5 Loss function

	2.3 Persistent Homology
	2.3.1 Simplices and Simplicial Complexes
	2.3.2 Simplicial Homology
	2.3.3 Persistence and Filtrations

	3 Related Work
	3.1 Topological Autoencoders
	3.2 Connectivity-Optimized Representation Learning via Persistent Homology

	4 Experiments
	4.1 Experiment 1: Variants of Topological Signature Loss
	4.2 Experiment 2: Impact of Representation Dimensionality
	4.3 Experiment 3: Balance between Loss Functions
	4.4 Experiment 4: Excluding NT-Xent Regularization

	5 Results
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 Experiment 3
	5.4 Experiment 4

	6 Discussion
	7 Conclusion
	List of Figures
	Glossary
	List of Tables
	References
	Appendix
	A Used Software Packages

		2024-01-06T10:21:08+0000
	sproof sign
	Simon Schindler [simon.schindler@fh-salzburg.ac.at]
	Signature export for Simon Schindler [simon.schindler@fh-salzburg.ac.at]

